FT-86 SpeedFactory
FT-86SF / Verus Front Splitter Dry Carbon Fiber Endplates
2013+ FR-S / BRZ / 86
Details
By creating a pocket of high pressure air, these increase down force on the front wheels to improve front tire grip, balance out a rear wing, or potentially run more wing angle to reduce track times further. Constructed of genuine dry carbon throughout, these add a nice look to the front without overly standing out as well.
Required Parts: FT-86 Front Splitter (sold separately)
Construction
- Completely dry carbon (no fiberglass or any other fabric used)
- Stainless hardware
- Rivet nut tool included
Features:
- Increase front end downforce
- Add an aggressive new look to the front end
- Minimal increase in weight
- Good L/D ratio
Design
The front splitter endplates were designed to increase front end downforce of the vehicle for improved performance at high rates of speed. By creating a high pressure pocket of air above the splitter and in front of the front wheels, we are able to increase front end downforce. By reducing the airflow that hits the wheel head on, we also reduce the airflow into the wheel well and thus lift generated in the wheel well.
Like all of our analysis before, each analysis was done using a half-car analysis since no yaw testing was completed. This is done using symmetry down the centerline of the car. Significantly less computational processing power is necessary when using a half-car model and was the reason behind this analysis approach. The meshing of the car is done using first a surface mesh and then volume mesh. To find a suitable mesh size for the analysis, a grid convergence study was done. A volume mesh count of 10 million cells was considered within the room of accuracy using mesh sensitivity analysis.
Fig 1: Vehicle in CFD software
Fig 2. Vector Plot of Front Splitter Winglet
Fig. 3: Streamline Plot of Front Splitter Winglet Test
Fig. 4: Scalar Plot of Front Splitter Winglet CFD Analysis
Numerical Data
The front splitter endplates increase downforce and drag according to our CFD analysis. The additional front downforce comes with a penalty of increased drag, however the l/d (lift over drag ratio) for this component is favorable. To put in another way, the amount of downforce this part produces is significant compared to the amount of drag increase.
Conclusion:
At a mere 100 MPH, these two pieces add an expected 40 lbs of downforce to the car. These can be used to help balance out a rear wing or allow the end user to run a bit more wing angle for faster times.
As we have said before, real world benefits may differ as this is a computational analysis. Something as simple as ride height or wheel choice can vary results, as well as various other aspects. Real world results could be better or worse than what is shown above. Keep in mind we did NOT vary any of these aspects and kept it a very simple A to B comparison with the results outlined above.
Very few companies perform CFD or wind tunnel analysis on any of their aerodynamic pieces. As a consumer you can rest assure that you are receiving a quality component with an engineering analysis and theory backed components that perform as well as they look.